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Thermal Fields as Causal Fluids
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In a previous paper we investigated a divergence-type theory (DDT) describing the dissi-
pative interaction between a field and a fluid. In this paper we compare the macroscopic
view of DDT with a microscopic special case, anO(N) scalar field to leading order in
the largeN approximation and its thermal fluctuations. Our aim is to compare within a
simple model the two approaches.
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1. INTRODUCTION

In a previous paper we investigated a divergence-type theory (DDT; Geroch
and Lindblom, 1990) describing the dissipative interaction between a field and a
fluid (Calzetta and Thibeault, 2001). We looked for theories that, under equilibrium
conditions, reduce to a Klein–Gordon (KG) scalar field and a perfect fluid. We
showed that the requirements of causality and positive entropy production put
nontrivial constraints on the structure of the interaction terms.

In this paper we compare the macroscopic view of DDT with a microscopic
special case, anO(N) scalar field to leading order in the largeN approximation
and its thermal fluctuations. Our aim is to compare within a simple model the
two approaches. Our basic motivation is very simple: to understand a complex
system, it is not always beneficial to work out the basic microscopic theory. The
archetypal example is of course the description of a gas using Newton’s laws on its
microscopic constituents instead of thermodynamics. Another example that brings
us closer to our discussion is the description of a viscous fluid. The Navier–Stokes
equations give only a smoothed out, macroscopic description of the dissipative
fluid, but more than sufficient for all practical purposes. Save in very specific
cases, few will try to describe a fluid by going down to its molecular components
and the quite complex interactions between them.
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The inflationary universe (Kolb and Turner, 1994) presents us with a similar
challenge. There various out-of-equilibrium fields interact nonlinearly. The cou-
pling with the metric makes things worse. Even if one works in the classical limit,
numerous approximations are needed to obtain answers and it is not always clear
if they do not hide the very behavior that we try to understand.

On the other side, if one could have a reliable macroscopic theory then the
relevant behavior would reveal itself. Sweeping generalizations like homogeneity
could be avoided and the system could be studied in its true complexity. However,
we do not have the equivalent of Navier–Stokes equations here nor it is clear that a
proper equivalent set of equations can even be obtained. First, one needs a suitable
framework where relativistic fluids can be described. That is where DTT comes in.
Second, we have to describe basic fields like the Klein–Gordon field in this frame-
work. Third, we have to understand which basic parameters are sufficient to de-
scribe the system at hand. In this work, we will only test our models in a very simple
context to see if the two approaches can be used in a meaningful way to describe the
same physical system, the relevant variable being the mean value of the scalar field.

The rest of the paper is organized as follows. In the next section we present
the theory of a scalar field withO(N) invariance and show that under suitable
approximations it can be reduced to a Hamiltonian system. In Section 3 we write
down a simple, nonlinear DTT and use it to analyze the thermalization process.
Finally, in Section 4 we present the comparison between the two approaches. We
summarize the main conclusions in some brief final remarks.

2. CLASSICAL FIELD WITH TEMPERATURE FLUCTUATIONS

The starting point for our microscopic model is theO(N) invariant action

S= N
∫ {
−1

2
∂µϕ

i ∂µϕi − λ
2

(
1

2
ϕiϕi + m2

λ

)2
}

d4x (1)

The model was already used in this context (Boyanovsky,et al., 1996; Cooper
et al., 1995) and has many nice features. It is customary to define a new field by
adding the constraint

[χ − λ(ϕiϕi /2+m2/λ)]2

2λ
We obtain a new actionS2

S2 = N
∫ {
−1

2
∂µφ

i ∂µφi + χ
2

2λ
− 1

2
χφiφi − m2

λ
χ

}
d4x

Representing the expectation value of the field with respect to the initial state
of the theory by

〈ϕ〉 = φ, 〈χ〉 = K
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we can now write the fields as the sum of mean fields and fluctuations

ϕi = φi + ψ i (2)

χ = K + κ
Keeping only next to leading terms in the largeN aproximation we can write

the effective action

0[φ i , K ] = S2[φi , K ] + i
Nh

2
Tr ln

(
i

2h

)
(∂µ∂

µ − K )

= S2
[
φi , K

]+ i
Nh

2
Tr ln

(−1

2

)
G−1

F (x − z) (3)

Variation of the effective action gives the equation for the classical field,

−∂µ∂µφi + Kφi = 0 (4)

and for theK field,

K = m2+ λ
2
φiφi + NλGF (x, x) (5)

It is helpful at this point to rotate in the internal space so thatφi = 0, i ∈
{1, N − 1}, andφN ≡ φ =

√
φiφi . Formally, we thus have the equations for one

mean fieldφ and its fluctuations save that the propagator is now multiplied byN.
The Feynman propagator for the fluctuations is given by

GF (x, x′)δi j = 〈T(ψ i (x)ψ j (x′))〉 (6)

which is solution of the following equation:

(−∂µ∂µ +m2)GF (x, x′) = −i hδ(x − x′)

whereψ i represents a generic quantum fluctuating field. If we assume a homoge-
neous initial state, it is convenient to introduce the Fourier expansion

ψ i (x) =
∫

d3k

(2π )3
exp(i Ek · Ex)

√
h

2ωk(0)

{
Uk(t)ai

Ek +U ∗k (t)ai
−Ek
}

(7)

The normalization for the modes is

W[U ∗k (t), Uk(t)] = −i h (8)

W[ f, g] = f ġ− ḟ g being the Wronskian. In the homogeneous case,

d2φ

dt2
+ Kφ = 0 (9)
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with the following equations of motion for the mode functionUk(t):

d2Uk(t)

dt2
+ ω2

k(t)Uk(t) = 0; ω2
k(t) = |Ek|2+ K (t) (10)

Substituting (7) in (6) gives

GF (x, x′) = GV (x, x′)+ GT (x, x′)

where we recognize a temperature-independent (or vacuum) part

GV (x, x′) =
∫

d3k

(2π )3
exp[i Ek · (Ex − Ex′)]{Uk(t)U ∗k (t ′)2(t − t ′)

+Uk(t ′)U ∗k (t)2(t ′ − t)}
and a temperature-dependent part

GT (x, x′) =
∫

d3k

(2π )3
{exp[i Ek · (Ex + Ex′)][Uk(t)Uk(t ′)gk +U ∗k (t)U ∗k (t ′)g∗k ]

+ exp[i Ek · (Ex − Ex′)][Uk(t)U ∗k (t ′)+U ∗k (t)Uk(t ′)]nk}
wherenk andgk represent the initial statistical mixture:〈

ai
Eka j
Ek′
〉 = (2π )3gkδ

3(Ek− Ek′)δi j〈
ai†
Ek a j
Ek′
〉 = (2π )3nkδ

3(Ek− Ek′)δi j

In the coincidence limit,

GF (x, x) = GV (x, x)+ GT (x, x)

with

GV (x, x) =
∫

d3k

(2π )3
|Uk(t)|2

and

GT (x, x) =
∫

d3k

(2π )3
{2 exp(i 2Ek · Ex) Re[Uk(t)Uk(t)gk] + 2|Uk(t)|2nk}

Let us now suppose that initially we have a thermal bath of particles

nk = 1

exp
(

hωk(0)
kBT

)
− 1

gk = 0
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and take the limith→ 0. In this way quantum effects disappear. However the
system does not become trivial since we still have thermal fluctuations. Indeed

lim
h→0

GV (x, x) = lim
h→0

∫
d3k

(2π )3

h

2ωk(0)
|Uk(t)|2 = 0

But

lim
h→0

GT (x, x) = lim
h→0

∫
d3k

(2π )3

1

2ωk(0)

h

exp
(

hωk(0)
kBT

)
− 1
|Uk(t)|2

=
∫

d3k

(2π )3

kBT

2ω2
k(0)
|Uk(t)|2

Thus, in this classical limit, we find

K = m2+ 1

2
λφ2+ λNkBT

∫
d3k

(2π )3

1

2ω2
k(0)
|Uk(t)|2 (11)

The energy–momentum tensor can be computed using (3) and

Tµν = 2√−g

δ0

δgµν

specializing thereafter to Minkowski or directly by taking the expectation value
of the classical energy–momentum tensor. Either way, we find (writing only the
nontrivial components)

〈T00〉 = 1

2
φ̇

2+ kBT
∫

d3k

(2π )3

1

2ω2
k(0)

[U̇ k(t)U̇
∗
k(t)+ |Ek|2|Uk(t)|2]

+ 1

2λ
(K − ηm2)(K + ηm2)+ m4

2λ

and

〈Tii 〉 = 1

2
φ̇

2+ kBT
∫

d3k

(2π )3

1

2ω2
k(0)

[
U̇ k(t)U̇

∗
k(t)− 1

3
|Ek|2|Uk(t)|2

]

− 1

2λ
(K −m2)(K +m2)− m4

2λ

These expressions are the total energy density and pressure for our system.
To integrate numerically our equations we need a finite number of variables. Since
the integrands are manifestly isotropic, we perform first the integration over the
angular variables, reducing the triple integral to a single one over the variable
k = |Ek|. In problems with spherical symmetry like this one, this procedure leads
to a better approximation of the integrals than approximating the 3-D integral as a
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triple sum over Cartesian coordinates. The remaining integral is written as a finite
sum:

〈T00〉 = 1

2
φ̇

2+ NkBT
Nk∑

k=1

1kαk[U̇k(t)U̇
∗
k(t)+ |Ek1k|2|Uk(t)|2]

+ 1

2λ
(K −m2)(K +m2)+ m4

2λ
(12)

and

〈Tii 〉 = 1

2
φ̇

2+ NkBT
Nk∑

k=1

1kαk

[
U̇ k(t)U̇

∗
k(t)− 1

3
|Ek1k|2|Uk(t)|2

]

− 1

2λ
(K −m2)(K +m2)− m4

2λ
(13)

where we defined

αk ≡ |Ek|2
4π2ω2

k(0)

and we set a cutoff frequencykmax= Nk1k. It is a straightforward exercise to verify
that we can now rewrite the whole system as a Hamiltonian system (H has units
of energy density). Writing the complex modesUk(t) as real and imaginary parts

Uk(t) = Ur (t)+ iUi (t)

and writing p ≡ φ̇ the Hamiltonian is

H = 1

2
p2+ 1

2
Kφ2+

Nk∑
k=1

{
1

4NkBTαk1k

[
52

r +52
i

]
+ NkBTαk1k(|Ek|2+ K )

[
U2

r +U2
i

]}− 1

2λ
(K −m2)2 (14)

The equations of motion are

−5̇r = ∂H

∂[Ur ]
= 2NkBTαk1k(|Ek|2+ K )Ur

U̇ r = ∂H

∂[5r ]
= 1

2NkBTαk1k
5r

and

−5̇i = ∂H

∂[Ui ]
= 2NkBTαk1k(|Ek|2+ K )Ui

U̇ i = ∂H

∂[5i ]
= 1

2NkBTαk1k
5i
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which also gives the definitions of5r and5i . Initially, we haveUr (0)= 1,U̇r = 0
andUi (0)= 0, U̇ i = −ωk(0).

K is a cyclic variable and its corresponding Hamiltonian equation gives the
(discretized) gap equation (11). Att = 0 this reads

K (0) = m2+ λ
2
φ2(0)+ λNkBT

Nk∑
k=1

1kαk

= m2+ λ
2
φ2(0)+ λNkBT1k

4π2

Nk∑
k=1

|1kEk|2
(|1kEk|2+ K (0))

(15)

an equation to be solved numerically to extractK (0) as a function of the initial
conditions and parameters.

3. FLUIDS

In a previous paper (Calzetta and Thibeault, 2001) we developed a consis-
tent relativistic framework to describe the mixture of scalar fields and perfect
fluids in the general context of DTT (Geroch and Lindblom, 1990). In covari-
ant language, a perfect fluid is a system whose energy–momentum tensor takes
the form Tab = gab+ uaub(ρ + p), whereρ is the energy density as seen by
an observer moving with the fluid,p is the pressure,gab is the metric, andua

is the 4-velocity. Usually this is not sufficient to characterize completely the
fluid, and another equation appears in the form of a conserved currentj a

;a =
0, where j a = jua, j being the corresponding density as seen by a comoving
observer. In DTT,Tab and j a are assumed to be derivable from a generating
functionχa

Tab = ∂χa

∂ξb
, j a = ∂χa

∂ξ

ξ andξa representing now the dynamical degrees of freedom of the theory.χa

can be further simplified since, as a consequence of the symmetry ofTab, we
have

χa = ∂χ

∂ξa
(16)

That is, all the fundamental tensors of the theory can be obtained from
the generating functionalχ . A perfect fluid is obtained ifχ = χ (ξ, µ), where
µ ≡ √−ξaξa . The Klein–Gordon theory can be obtained using

χc = −1

2
ξ2 ln β(c) + 1

2
Vβ2

(c)
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where β(c), is the inverse temperature, the currentj a = ξ

β2
(c)
βa

(c), and ξ =
−βaφa. The Klein–Gordon equation is given byj a

;a =V ′(φ), V(φ) being the
potential. The theory describing the scalar field and a perfect fluid (q-fluid) to-
gether can be obtained enlarging the generating functional by the addition of an
interaction functional4 (4a being defined as in (16). The energy–momentum
tensors of field and fluid will not be individually conserved and furthermore the
Klein–Gordon equation will also deviate from its original form. The total set of
equations governing our theory can be written as

j a
;a = V ′ +1

Tab
(c);b = I a

Tab
(q);b = −I a

βa
(c)φ,a = −ξ (17)

j a and Tab
c are the current and energy–momentum tensor for the scalar field

and

Tab
(q) =

∂(χa +4a)

∂β(q)b

The pressure is by definition given by

5 ≡ Tii

In the homogeneous case, the only nontrivial, independent equation for the energy–
momentum tensor is thea = b = 0 one. It is convenient to work with

T00
+ = T00

(c) + T00
(q) =

∂χa

∂βb
(18)

T00
− = T00

(c) − T00
(q) = 2

∂χa

∂Bb
(19)

where the new variableBa = βa
(c) − βa

(q) and 2β = βa
(c) + βa

(q). To compute (18)
and (19) we need to propose some specific form for the interaction functional4.
We use as model for our interaction term (Calzetta and Thibeault, 2001)

4 = f0
v

u3
+ g0

w2

u3
(20)

whereu = √−βaβa, w = √−Baβa, andv = √−Ba Ba are the scalars that can
be constructed from the temperature vectorsBa andβa. Therefore the system,
restricted to the homogeneous case:

−p,t = V ′(φ)+1 (21)

T00
+,t = 0 (22)
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T00
−,t = 2I 0 (23)

φ,t = p (24)

Note that the total energyT00 is conserved [Eq. (22)]. In the following it is
convenient to work with the variables defined from

B = βc − βq ≡ sβq

andβ(q) ≡ βq. We still have to define theq-fluid. Since it is a classical fluid, we
choose an equation of state consistent with the classical equipartition theorem

pq = acn

3βq

ρq = acn

βq

with ac = 3, andn being the particle density of the fluid. We can now compute
explicitly T00

+ andT00
− using (18)–(20)

T00
+ =

1

2
p2+ V(φ)+ acn

βq
+ 200

s2

(1+ s/2)6
1

β4
q

(25)

T00
− =

1

2
p2+ V(φ)− acn

βq
− 160

s

(1+ s/2)5
1

β4
q

(26)

where we introduce0 = f0+ g0.

Now we must model the right-hand side. In this context, the entropy flux is
given bySa = χa − Tab

+ βb − Tab
− Bb − j aξ and the entropy creation

∇aSa = −BbI b − ξ1 (27)

Within leading order in the largeN approximation the entropy creation is
exactly zero and we must have

1 = MβB (28)

I a = Mξβua (29)

We will be interested particularly in this special case since we want our fluid to
be compared with a Hamiltonian, nondissipative theory.M has dimensions of
temperature to the fifth power and so we can write

M = κ0

τ 5
(30)

with κ0 being a dimensional constant andτ is a function of the basic fluid variables
with units of inverse temperature (kBT)−1. Using (28)–(30) we write

1 = κ0

τ 5

(
1+ s

2

)
sβ2

q (31)
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I a = − κ0

τ 5
p(1+ s)

(
1+ s

2

)
β2

q (32)

A choice must be made forτ . We choose

τ = 1

|ξ |

= 1

βc p
= 1

(1+ s)βq p
(33)

We can now turn to the task of obtaining explicitly the equations of motions for
the fluid. We introduce

d1(s) ≡ 160
s

(1+ s/2)5
(34)

d2(s) ≡ 200
s2

(1+ s/2)6
(35)

Substituting (25) and (26) into (22) and (23) respectively, we can write the
differential equations fors andβq as

−1(t)p(t)− acn
1

β2
q

βq,t + d′2(s)
1

β4
q

s,t − 4d2(s)
1

β5
q

βq,t = 0

−1(t)p(t)+ acn
1

β2
q

βq,t − d′1(s)
1

β4
q

s,t + 4d1(s)
1

β5
q

βq,t = 2I 0

It is a straightforward exercise to obtain equations fors andβ. The equations
of motion for the dissipative fluid are thus

s,t =
2{(acβ

3
q + 4d2(s))I 0+ [acβ

3
q + 2(d1(s)+ d2(s))]1(t)p(t)}

4W[d1(s), d2(s)] − acβ3
q(d′1(s)− d′2(s))

β4
q (36)

βq,t = 2d′2(s)I 0+ (d′1(s)+ d′2(s))1(t)p(t)

4W[d1(s), d2(s)] − acβ3
q(d′1(s)− d′2(s))

β5
q (37)

φ,t = p (38)

p,t = −V ′(φ)−1 (39)

where1, I 0, d1, d2, and W[a, b] are defined in (31), (32), (34), (35), and (8)
respectively. We choose

V(φ) = 1

2
m2φ2+ 1

8
λφ4

as in (1).
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4. COMPARISON BETWEEN THE THERMAL MODEL
AND THE RELATIVISTIC FLUID

We want to compare numerically the theory described by (14) with the one
described by (36)–(39). In the first one we have 4Nk + 2 ordinary differential
equations, and in the second, 4. The parameters that are common to both arem,
the mass of the scalar part´ıcle, andλ, the coupling parameter of theφ4 theory.
They will be set equal in each set. On the Hamiltonian side we have as parameters
N, Nk,1k, T , and on the fluid sidek0, f0, g0, n. Since the role of theq-fluid is to
describe the thermal bath, the initial conditions forβq(0)= (kBT)−1, the inverse
temperature of the thermal bath of the fluctuations. Initially the Hamiltonian density
and the total pressure of the microscopic model could be written as

H = 1

2
p2

0 +
1

2
K (0)φ2

0 +
NkBT

12π2
(1k)3Nk(Nk + 1)(2Nk + 1)

− (K (0)−m2)2

2λ
+ m2

2λ
(40)

〈Tii 〉 = 1

2
p2

0 −
1

2
K (0)φ2

0 +
NkBT

36π2
(1k)3 Nk(Nk + 1)(2Nk + 1)

− (K (0)+ 3m2)(K (0)−m2)

6λ
− m2

2λ
(41)

with K (0) being the solution of the implicit equation (15). In the other model we
have

T00
+ =

1

2
p2

0 + V(φ0)+ acn

βq(0)
+ 20( f0+ g0)

s2
0

(1+ s0/2)6
1

β4
q(0)

(42)

5+ = 1

2
p2

0 − V(φ0)+ acn

3βq(0)
+ 2(2 f0+ 3g0)

s2
0

(1+ s0/2)6
1

β4
q(0)

(43)

where5+ denotes the total pressure in the fluid model. We demand that initially
the total energy density and pressure be equal. For fixeds0 and f0, this is a system
of two equations for two unknownsn andg0. For the simulation that is presented
here, f0 = −1.1 ands0 = 0.2. The initial conditions for the scalar mean field
and its conjuguate momenta were chosen equal:φ0 = 2.2 andp = 0. We obtain
n = 20.05 andg0 = 178. The value fork0 was 0.02.N was set to 10 and the cutoff
Nk = 160 with1k = 0.1. The massm= 2.2 andλ = 0.75.

Both systems of equations (DTT and thermal fluctuations) were integrated
using Burlich–Stoer adaptive routine (Vetterlinget al., 1993). This is both faster
and more precise than the more familiar Runge–Kutta adaptive step routine, which
was nevertheless used to verify the numerical output of our routine. Since both
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Fig. 1. Time dependence of the scalar field–fluid and the scalar field–thermal fluctuations.

systems conserve energy, as a consistency check for the precision of the numer-
ical integration we computed the energy density in both cases and verified that
it remains constant within acceptable tolerance (usually less than one part in a
thousand for the thermal fluctuations; in the case of the fluid, the Hamiltonian was
conserved down to numerical precision∼10−15) (Fig. 1).

5. CONCLUSIONS

We used the macroscopic view of DDT in the case of a scalar field and a
fluid to compare it with a microscopic special case, anO(N) scalar field to leading
order in the largeN approximation and its thermal fluctuations.

We found that we can describe quite well the damping of the scalar field,
which is the crucial element in undertanding the cosmological reheating process.
On the other hand, the frequency of oscillations in the microscopic model tends
to be higher than in the macroscopic one. This difference can be attributed to
our simplifying assumption of equating theV(φ) potential in both models (in the
macroscopic model, an effective potential should be used) and the naive linear
equation of state for the fluid.
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The success in describing the damping of the mean field is an indication that
this is a promising approach for future research in reheating and thermalization in
cosmology.
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